Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Fitoterapia ; 169: 105623, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37500018

RESUMEN

Alpinia zerumbet is a plant from the Zingiberaceae family, popularly used for hypertension treatment. Several studies have demonstrated Alpinia zerumbet vasodilator effect on conductance vessels but not on resistance vessels. Thereby, the aim of this study was to verify the vasodilator effect of the essential oil of Alpinia zerumbet (EOAz) on isolated rat resistance arteries and characterize its mechanism of action. Therefore, the effect of EOAz (3 to 3000 µg/mL) was verified in second-order branches of the mesenteric artery (SOBMA) pre-contracted by KCl and U46619. To study the mechanism of action, the influence of several inhibitors (TEA, 4-AP, Glibenclamide, Atropine, L-NAME, ODQ and indomethacin) on the vasodilator effect of EOAz was evaluated. Some protocols were also performed aiming to study the effect of EOAz on Ca2+ influx and release from intracellular storage. Furthermore, the binding energy of the main constituents with calcium channels were evaluated by molecular docking. Results showed an endothelium-independent vasorelaxant effect of EOAz on SOBMA, and only ODQ and L-NAME produced significant alteration on its pEC50. Regarding the calcium assays, contraction reduction caused by incubation with EOAz was observed in all three protocols. Hence, our results suggest that EOAz has a vasodilator effect mediated by inhibition of Ca2+ influx and release from intracellular storage, as well as an activation of the NOS/sGC pathway.


Asunto(s)
Alpinia , Aceites Volátiles , Ratas , Animales , Vasodilatadores/farmacología , Aceites Volátiles/farmacología , Alpinia/química , Calcio , NG-Nitroarginina Metil Éster/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Arterias , Vasodilatación , Endotelio Vascular
3.
Sci Rep ; 13(1): 8060, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198208

RESUMEN

Despite all efforts to combat the pandemic of COVID-19, we are still living with high numbers of infected persons, an overburdened health care system, and the lack of an effective and definitive treatment. Understanding the pathophysiology of the disease is crucial for the development of new technologies and therapies for the best clinical management of patients. Since the manipulation of the whole virus requires a structure with an adequate level of biosafety, the development of alternative technologies, such as the synthesis of peptides from viral proteins, is a possible solution to circumvent this problem. In addition, the use and validation of animal models is of extreme importance to screen new drugs and to compress the organism's response to the disease. Peptides derived from recombinant S protein from SARS-CoV-2 were synthesized and validated by in silico, in vitro and in vivo methodologies. Macrophages and neutrophils were challenged with the peptides and the production of inflammatory mediators and activation profile were evaluated. These peptides were also inoculated into the swim bladder of transgenic zebrafish larvae at 6 days post fertilization (dpf) to mimic the inflammatory process triggered by the virus, which was evaluated by confocal microscopy. In addition, toxicity and oxidative stress assays were also developed. In silico and molecular dynamics assays revealed that the peptides bind to the ACE2 receptor stably and interact with receptors and adhesion molecules, such as MHC and TCR, from humans and zebrafish. Macrophages stimulated with one of the peptides showed increased production of NO, TNF-α and CXCL2. Inoculation of the peptides in zebrafish larvae triggered an inflammatory process marked by macrophage recruitment and increased mortality, as well as histopathological changes, similarly to what is observed in individuals with COVID-19. The use of peptides is a valuable alternative for the study of host immune response in the context of COVID-19. The use of zebrafish as an animal model also proved to be appropriate and effective in evaluating the inflammatory process, comparable to humans.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Pez Cebra , Macrófagos , Péptidos
4.
Sci Total Environ ; 882: 163617, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37088384

RESUMEN

The COVID-19 pandemic has caused unprecedented negative impacts in the modern era, including economic, social, and public health losses. On the other hand, the potential effects that the input of SARS-CoV-2 in the aquatic environment from sewage may represent on non-target organisms are not well known. In addition, it is not yet known whether the association of SARS-CoV-2 with other pollutants, such as microplastics (MPs), may further impact the aquatic biota. Thus, we aimed to evaluate the possible ecotoxicological effects of exposure of male adults Poecilia reticulata, for 15 days, to inactivated SARS-CoV-2 (0.742 pg/L; isolated SARS.CoV2/SP02.2020.HIAE.Br) and polyethylene MP (PE MPs) (7.1 × 104 particles/L), alone and in combination, from multiple biomarkers. Our data suggest that exposure to SARS-CoV-2 induced behavioral changes (in the open field test), nephrotoxic effect (inferred by the increase in creatinine), hepatotoxic effect (inferred by the increase in bilirubin production), imbalance in the homeostasis of Fe, Ca, and Mg, as well as an anticholinesterase effect in the animals [marked by the reduction of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity]. On the other hand, exposure to PE MPs induced a genotoxic effect (assessed by the comet assay), as well as an increase in enzyme activity alpha-amylase, alkaline phosphatase, and carboxylesterases. However, we did not show synergistic, antagonistic, or additive effects caused by the combined exposure of P. reticulata to SARS-CoV-2 and PE MPs. Principal component analysis (PCA) and values from the "Integrated Biomarker Response" index indicate that exposure to SARS-CoV-2 was determinant for a more prominent effect in the evaluated animals. Therefore, our study sheds light on the ecotoxicity of the new coronavirus in non-target organisms and ratifies the need for more attention to the impacts of COVID-19 on aquatic biota.


Asunto(s)
COVID-19 , Contaminantes Químicos del Agua , Animales , Masculino , Humanos , Microplásticos/toxicidad , Polietileno/toxicidad , Plásticos/toxicidad , SARS-CoV-2 , Acetilcolinesterasa , Pandemias , Butirilcolinesterasa , Peces , Biomarcadores , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
5.
Front Neurosci ; 16: 742239, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35546897

RESUMEN

Objective: Moringa oleifera possesses multiple biological effects and the 4-[(4'-O-acetyl-α-L- rhamnosyloxy) benzyl] isothiocyanate accounts for them. Based on the original isothiocyanate molecule we obtained a semisynthetic derivative, named 4-[(2',3',4'-O-triacetyl-α-L-rhamnosyloxy) N-benzyl] hydrazine carbothioamide (MC-H) which was safe and effective in a temporomandibular joint (TMJ) inflammatory hypernociception in rats. Therefore, considering that there is still a gap in the knowledge concerning the mechanisms of action through which the MC-H effects are mediated, this study aimed to investigate the involvement of the adhesion molecules (ICAM-1, CD55), the pathways heme oxygenase-1 (HO-1) and NO/cGMP/PKG/K+ ATP, and the central opioid receptors in the efficacy of the MC-H in a pre-clinical study of TMJ pain. Methods: Molecular docking studies were performed to test the binding performance of MC-H against the ten targets of interest (ICAM-1, CD55, HO-1, iNOS, soluble cGMP, cGMP-dependent protein kinase (PKG), K+ ATP channel, mu (µ), kappa (κ), and delta (δ) opioid receptors). In in vivo studies, male Wistar rats were treated with MC-H 1 µg/kg before TMJ formalin injection and nociception was evaluated. Periarticular tissues were removed to assess ICAM-1 and CD55 protein levels by Western blotting. To investigate the role of HO-1 and NO/cGMP/PKG/K+ ATP pathways, the inhibitors ZnPP-IX, aminoguanidine, ODQ, KT5823, or glibenclamide were used. To study the involvement of opioid receptors, rats were pre-treated (15 min) with an intrathecal injection of non-selective inhibitor naloxone or with CTOP, naltrindole, or norbinaltorphimine. Results: All interactions presented acceptable binding energy values (below -6.0 kcal/mol) which suggest MC-H might strongly bind to its molecular targets. MC-H reduced the protein levels of ICAM-1 and CD55 in periarticular tissues. ZnPP-IX, naloxone, CTOP, and naltrindole reversed the antinociceptive effect of MC-H. Conclusion: MC-H demonstrated antinociceptive and anti-inflammatory effects peripherally by the activation of the HO-1 pathway, as well as through inhibition of the protein levels of adhesion molecules, and centrally by µ and δ opioid receptors.

6.
Neurotoxicology ; 90: 184-196, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35395329

RESUMEN

Despite advances in research on the vaccine and therapeutic strategies of COVID-19, little attention has been paid to the possible (eco)toxicological impacts of the dispersion of SARS-CoV-2 particles in natural environments. Thus, in this study, we aimed to evaluate the behavioral and biochemical consequences of the short exposure of outbred and inbred mice (male Swiss and C57Bl/6 J mice, respectively) to PSPD-2002 (peptide fragments of the Spike protein of SARS-CoV-2) synthesized in the laboratory. Our data demonstrated that after 24 h of intraperitoneal administration of PSPD-2002 (at 580 µg/kg) the animals did not present alterations in their locomotor, anxiolytic-like, or anxiety-like behavior (in the open field test), nor antidepressant-like or depressive behavior in the forced swimming test. However, the C57Bl/6 J mice exposed to PSPD-2002 showed memory deficit in the novel object recognition task, which was associated with higher production of thiobarbituric acid reactive substances, as well as the increased suppression of acetylcholinesterase brain activity, compared to Swiss mice also exposed to peptide fragments. In Swiss mice the reduction in the activity of superoxide dismutase and catalase in the brain was not associated with increased oxidative stress biomarkers (hydrogen peroxide), suggesting that other antioxidant mechanisms may have been activated by exposure to PSPD-2002 to maintain the animals' brain redox homeostasis. Finally, the results of all biomarkers evaluated were applied into the "Integrated Biomarker Response Index" (IBRv2) and the principal component analysis (PCA), and greater sensitivity of C57Bl/6 J mice to PSPD-2002 was revealed. Therefore, our study provides pioneering evidence of mammalian exposure-induced toxicity (non-target SARS-CoV-2 infection) to PSPD-2002, as well as "sheds light" on the influence of genetic profile on susceptibility/resistance to the effects of viral peptide fragments.


Asunto(s)
COVID-19 , SARS-CoV-2 , Acetilcolinesterasa , Animales , Biomarcadores , Masculino , Mamíferos , Ratones , Ratones Endogámicos C57BL , Fragmentos de Péptidos , Péptidos
7.
Aquat Toxicol ; 245: 106104, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35176694

RESUMEN

There have been significant impacts of the current COVID-19 pandemic on society including high health and economic costs. However, little is known about the potential ecological risks of this virus despite its presence in freshwater systems. In this study, we aimed to evaluate the exposure of Poecilia reticulata juveniles to two peptides derived from Spike protein of SARS-CoV-2, which was synthesized in the laboratory (named PSPD-2002 and PSPD-2003). For this, the animals were exposed for 35 days to the peptides at a concentration of 40 µg/L and different toxicity biomarkers were assessed. Our data indicated that the peptides were able to induce anxiety-like behavior in the open field test and increased acetylcholinesterase (AChE) activity. The biometric evaluation also revealed that the animals exposed to the peptides displayed alterations in the pattern of growth/development. Furthermore, the increased activity of superoxide dismutase (SOD) and catalase (CAT) enzymes were accompanied by increased levels of malondialdehyde (MDA), reactive oxygen species (ROS) and hydrogen peroxide (H2O2), which suggests a redox imbalance induced by SARS-CoV-2 spike protein peptides. Moreover, molecular docking analysis suggested a strong interaction of the peptides with the enzymes AChE, SOD and CAT, allowing us to infer that the observed effects are related to the direct action of the peptides on the functionality of these enzymes. Consequently, our study provided evidence that the presence of SARS-CoV-2 viral particles in the freshwater ecosystems offer a health risk to fish and other aquatic organisms.


Asunto(s)
COVID-19 , Poecilia , Contaminantes Químicos del Agua , Acetilcolinesterasa/metabolismo , Animales , Catalasa/metabolismo , Ecosistema , Humanos , Peróxido de Hidrógeno , Simulación del Acoplamiento Molecular , Pandemias , Poecilia/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Superóxido Dismutasa/metabolismo , Contaminantes Químicos del Agua/toxicidad
8.
Sci Total Environ ; 790: 148129, 2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34380260

RESUMEN

One of the most impact issues in recent years refers to the COVID-19 pandemic, the consequences of which thousands of deaths recorded worldwide, are still inferior understood. Its impacts on the environment and aquatic biota constitute a fertile field of investigation. Thus, to predict the impact of the indiscriminate use of azithromycin (AZT) and hydroxychloroquine (HCQ) in this pandemic context, we aim to assess their toxicological risks when isolated or in combination, using zebrafish (Danio rerio) as a model system. In summary, we observed that 72 h of exposure to AZT and HCQ (alone or in binary combination, both at 2.5 µg/L) induced the reduction of total protein levels, accompanied by increased levels of thiobarbituric acid reactive substances, hydrogen peroxide, reactive oxygen species and nitrite, suggesting a REDOX imbalance and possible oxidative stress. Molecular docking analysis further supported this data by demonstrating a strong affinity of AZT and HCQ with their potential antioxidant targets (catalase and superoxide dismutase). In the protein-protein interaction network analysis, AZT showed a putative interaction with different cytochrome P450 molecules, while HCQ demonstrated interaction with caspase-3. The functional enrichment analysis also demonstrated diverse biological processes and molecular mechanisms related to the maintenance of REDOX homeostasis. Moreover, we also demonstrated an increase in the AChE activity followed by a reduction in the neuromasts of the head when zebrafish were exposed to the mixture AZT + HCQ. These data suggest a neurotoxic effect of the drugs. Altogether, our study demonstrated that short exposure to AZT, HCQ or their mixture induced physiological alterations in adult zebrafish. These effects can compromise the health of these animals, suggesting that the increase of AZT and HCQ due to COVID-19 pandemic can negatively impact freshwater ecosystems.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Hidroxicloroquina , Animales , Azitromicina , Ecosistema , Humanos , Hidroxicloroquina/toxicidad , Simulación del Acoplamiento Molecular , Pandemias , SARS-CoV-2 , Pez Cebra
9.
Sci Total Environ ; 780: 146553, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33774288

RESUMEN

The impacts on human health and the economic and social disruption caused by the pandemic COVID-19 have been devastating. However, its environmental consequences are poorly understood. Thus, to assess whether COVID-19 therapy based on the use of azithromycin (AZT) and hydroxychloroquine (HCQ) during the pandemic affects wild aquatic life, we exposed (for 72 h) neotropical tadpoles of the species Physalaemus cuvieri to the water containing these drugs to 12.5 µg/L. We observed that the increase in superoxide dismutase and catalase in tadpoles exposed to AZT (alone or in combination with HCQ) was predominant to keep the production of NO, ROS, TBARS and H2O2 equitable between the experimental groups. In addition, the uptake of AZT and the strong interaction of AZT with acetylcholinesterase (AChE), predicted by the molecular docking analysis, were associated with the anticholinesterase effect observed in the groups exposed to the antibiotic. However, the unexpected increase in butyrylcholinesterase (BChE) in these same groups suggests its constitutive role in maintaining cholinergic homeostasis. Therefore, taken together, our data provide a pioneering evidence that the exposure of P. cuvieri tadpoles to AZT (alone or in combination with HCQ) in a predictably increased environmental concentration (12.5 µg/L) elicits a compensatory adaptive response that can have, in the short period of exposure, guaranteed the survival of the animals. However, the high energy cost for maintaining physiological homeostasis, can compromise the growth and development of animals and, therefore, in the medium-long term, have a general negative effect on the health of animals. Thus, it is possible that COVID-19 therapy, based on the use of AZT, affects wild aquatic life, which requires greater attention to the impacts that this drug may represent.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Hidroxicloroquina , Animales , Animales Salvajes , Anuros , Azitromicina/toxicidad , Humanos , Peróxido de Hidrógeno , Larva , Simulación del Acoplamiento Molecular , SARS-CoV-2
10.
Int J Antimicrob Agents ; 56(3): 106119, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32738306

RESUMEN

Coronavirus disease 2019 (COVID-19) is a highly transmissible viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical trials have reported improved outcomes resulting from an effective reduction or absence of viral load when patients were treated with chloroquine (CQ) or hydroxychloroquine (HCQ). In addition, the effects of these drugs were improved by simultaneous administration of azithromycin (AZM). The receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein binds to the cell surface angiotensin-converting enzyme 2 (ACE2) receptor, allowing virus entry and replication in host cells. The viral main protease (Mpro) and host cathepsin L (CTSL) are among the proteolytic systems involved in SARS-CoV-2 S protein activation. Hence, molecular docking studies were performed to test the binding performance of these three drugs against four targets. The findings showed AZM affinity scores (ΔG) with strong interactions with ACE2, CTSL, Mpro and RBD. CQ affinity scores showed three low-energy results (less negative) with ACE2, CTSL and RBD, and a firm bond score with Mpro. For HCQ, two results (ACE2 and Mpro) were firmly bound to the receptors, however CTSL and RBD showed low interaction energies. The differences in better interactions and affinity between HCQ and CQ with ACE2 and Mpro were probably due to structural differences between the drugs. On other hand, AZM not only showed more negative (better) values in affinity, but also in the number of interactions in all targets. Nevertheless, further studies are needed to investigate the antiviral properties of these drugs against SARS-CoV-2.


Asunto(s)
Antivirales/farmacología , Azitromicina/química , Betacoronavirus/química , Catepsina L/química , Cloroquina/química , Cisteína Endopeptidasas/química , Hidroxicloroquina/química , Peptidil-Dipeptidasa A/química , Glicoproteína de la Espiga del Coronavirus/química , Proteínas no Estructurales Virales/química , Secuencias de Aminoácidos , Enzima Convertidora de Angiotensina 2 , Antivirales/química , Azitromicina/farmacología , Betacoronavirus/metabolismo , Sitios de Unión , COVID-19 , Catepsina L/antagonistas & inhibidores , Catepsina L/metabolismo , Cloroquina/farmacología , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Cisteína Endopeptidasas/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Humanos , Hidroxicloroquina/farmacología , Simulación del Acoplamiento Molecular , Pandemias , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Termodinámica , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Acoplamiento Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA